把每個點之間的中點加進去當作頂點
在一一枚舉每個點正在對稱軸上,並且算出對稱軸的向量
之後再求所有兩兩的點之間的向量要跟對稱軸的向量為垂直
並且兩兩點之間的中點要與對稱軸的向量為平行
全部都是才算是對稱軸
因為對稱關係 所以會重複一次,所以記得要除2
//
// GGGGGGGGGGGGG CCCCCCCCCCCCC AAA
// GGG::::::::::::G CCC::::::::::::C A:::A
// GG:::::::::::::::G CC:::::::::::::::C A:::::A
// G:::::GGGGGGGG::::G C:::::CCCCCCCC::::C A:::::::A
// G:::::G GGGGGG C:::::C CCCCCC A:::::::::A
//G:::::G C:::::C A:::::A:::::A
//G:::::G C:::::C A:::::A A:::::A
//G:::::G GGGGGGGGGGC:::::C A:::::A A:::::A
//G:::::G G::::::::GC:::::C A:::::A A:::::A
//G:::::G GGGGG::::GC:::::C A:::::AAAAAAAAA:::::A
//G:::::G G::::GC:::::C A:::::::::::::::::::::A
// G:::::G G::::G C:::::C CCCCCC A:::::AAAAAAAAAAAAA:::::A
// G:::::GGGGGGGG::::G C:::::CCCCCCCC::::C A:::::A A:::::A
// GG:::::::::::::::G CC:::::::::::::::C A:::::A A:::::A
// GGG::::::GGG:::G CCC::::::::::::C A:::::A A:::::A
// GGGGGG GGGG CCCCCCCCCCCCCAAAAAAA AAAAAAA
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <climits>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <cctype>
#include <utility>
#include <ctime>
#include <complex>
using namespace std;
#ifdef DEBUG
#define VAR(a,b) decltype(b) a=(b)
#define debug(...) printf("DEBUG: "),printf(__VA_ARGS__)
#define gettime() end_time=clock();printf("now running time is %.7f\n",(float)(end_time - start_time)/CLOCKS_PER_SEC);
#else
#define VAR(a,b) __typeof(b) a=(b)
#define debug(...)
#define gettime()
#endif
typedef unsigned int uint;
typedef long long int Int;
typedef unsigned long long int UInt;
#define Set(a,s) memset(a,s,sizeof(a))
#define Write(w) freopen(w,"w",stdout)
#define Read(r) freopen(r,"r",stdin)
#define Pln() printf("\n")
#define I_de(x,n)for(int i=0;i<n;i++)printf("%d ",x[i]);Pln()
#define De(x)printf(#x"%d\n",x)
#define For(i,x)for(int i=0;i<x;i++)
#define CON(x,y) x##y
#define Pmz(dp,nx,ny)for(int hty=0;hty<ny;hty++){for(int htx=0;htx<nx;htx++){\
printf("%d ",dp[htx][hty]);}Pln();}
#define M 2005
#define PII pair<int,int>
#define PB push_back
#define oo INT_MAX
#define Set_oo 0x3f
#define FOR(a,b) for(VAR(a,(b).begin());a!=(b).end();++a)
#define eps 1e-6
#define X first
#define Y second
clock_t start_time=clock(), end_time;
bool xdy(double x,double y){return x>y+eps;}
bool xddy(double x,double y){return x>y-eps;}
bool xcy(double x,double y){return x<y-eps;}
bool xcdy(double x,double y){return x<y+eps;}
int min3(int x,int y,int z){
int tmp=min(x,y);
return min(tmp,z);
}
int max3(int x,int y,int z){
int tmp=max(x,y);
return max(tmp,z);
}
#define x real()
#define y imag()
typedef complex<int> pt;
int n;
pt p[M];
int dot(pt a,pt oa,pt b,pt ob){
return (a.x-oa.x)*(b.x-ob.x)+(a.y-oa.y)*(b.y-ob.y);
}
int cross(pt o,pt a,pt b){
return (a.x-o.x)*(b.y-o.y)-(b.x-o.x)*(a.y-o.y);
}
int ff=0;
void solve(){
int ans=0;
for(int i=0;i<n;i++){
int pi=(i-1+n)%n,ni=(i+1)%n;
pt cm=(p[pi]+p[ni])/2;
if(cm==p[i]){
cm=pt(p[i].x+p[i].y-p[ni].y,p[i].y-p[i].x+p[ni].x);
}
int j;
for(j=1;j<n/2;j++){
int pi=(i-j+n)%n,ni=(i+j)%n;
pt cm2=(p[pi]+p[ni])/2;
// debug("%d %d\n",cm2.x,cm2.y);
if(dot(cm,p[i],p[pi],p[ni])!=0){
break;
}
else if(cross(cm,cm2,p[i])!=0)
break;
}
if(j==n/2){
if(cross(cm,p[i],p[(i+n/2)%n])==0){
ans++;
// debug("%d\n",i);
}
}
}
printf("Polygon #%d has %d symmetry line(s).\n",++ff,ans/2);
}
int main() {
ios_base::sync_with_stdio(0);
while(~scanf("%d",&n)&&n){
n*=2;
for(int i=0;i<n;i+=2){
int a,b;
scanf("%d %d",&a,&b);
p[i]=pt(a,b);
p[i]=4*p[i];
}
for(int i=1;i<n;i+=2){
int pi=(i-1+n)%n,ni=(i+1)%n;
p[i]=(p[pi]+p[ni])/2;
}
solve();
}
}
留言
張貼留言